
COARSE QUAD LAYOUTS THROUGH ROBUST
SIMPLIFICATION OF CROSS FIELD SEPARATRIX

PARTITIONS

Ryan Viertel1 Braxton Osting2 Matthew Staten1

1Sandia National Laboratories, Albuquerque, NM, U.S.A. rvierte@sandia.gov, mlstate@sandia.gov
2University of Utah, Salt Lake City, UT, U.S.A. osting@math.utah.edu

ABSTRACT

Streamline-based quad meshing algorithms use smooth cross fields to partition surfaces into quadrilateral regions by
tracing cross field separatrices. In practice, re-entrant corners and misalignment of singularities lead to small regions
and limit cycles, negating some of the benefits a quad layout can provide in quad meshing. We introduce three novel
methods to improve on a pipeline for coarse quad partitioning. First, we formulate an efficient method to compute
high-quality cross fields on curved surfaces by extending the diffusion generated method from Viertel and Osting
(SISC, 2019). Next, we introduce a method for accurately computing the trajectory of streamlines through singular
triangles that prevents tangential crossings. Finally, we introduce a robust method to produce coarse quad layouts
by simplifying the partitions obtained via naive separatrix tracing. Our methods are tested on a database of 100
objects and the results are analyzed. The algorithm performs well both in terms of efficiency and visual results on
the database when compared to state-of-the-art methods.

Keywords: cross fields, quad partitioning, quad meshing, surface decomposition

1. INTRODUCTION

Block structured quad meshes are often desirable be-
cause of their numerical efficiency [1], low memory re-
quirements [2], and high mesh quality [3]. Having such
a block structure on a surface is also advantageous for
tasks such as spline fitting and isogeometric analysis
[4]. In the past, such meshes have been designed by
hand or in an interactive environment [5]. More re-
cently, researchers have made progress towards fully
automating this process [4]. The problem of coarse
quad layout generation can be summarized as deter-
mining the placement of irregular nodes of the lay-
out, and determining the connectivity of those nodes
in such a way that the resulting layout is topologically
valid, coarse, and such that a mapping of the region to
a quadrilateral in the plane results in low distortion.

Various approaches have been taken to generate coarse
quad partitions of surfaces, each of which address

these problems of irregular node placement and de-
termining connectivity in different ways. These meth-
ods include medial axis subdivision [6, 7], computing
the Morse-Smale complex [8], surface foliations [9],
dual loops [10], simplifying an existing quad mesh
[11, 12], and more recently, cross field based ap-
proaches [3, 13, 14, 15, 16, 17, 18]. While in this discus-
sion we focus on cross field based streamline tracing
approaches, Campen [4] provides an excellent litera-
ture review on quad patching algorithms.

In cross field based streamline tracing approaches, ir-
regular node placement is determined by computing
singular points of the cross field, where simple sin-
gularities of positive or negative index correspond to
irregular nodes of valence 3 or 5 respectively. The
connectivity of the layout is then determined by either
tracing out raw separatrices of the cross field, or by us-
ing the isolines of an underlying parameterization. A
common problem with separatrix tracing approaches is

Algorithm 1 Partitioning a surface M into a coarse
quad layout.

Input: A triangle mesh T representing a surface M
in R3.

Output: A quad layout with T-junctions Q parti-
tioning M into four-sided regions.

1. Compute a smooth cross field on T.
2. Construct a quad layout with T-junctions by
tracing out separatrices of the cross field.
3. Simplify the quad layout with T-junctions.

that on a discrete geometry, singularities are never per-
fectly aligned. In practice, this frequently causes limit
cycles and very thin regions to occur within the quad
layout. This is problematic for meshing because very
small mesh elements are required. Further, the base
complex of the mesh is often far more complicated than
necessary, mitigating the benefits of a multi-block de-
composition. Another problem is that despite the fact
that in the continuum, streamlines can only cross each
other orthogonally [19], numerical inaccuracies often
lead to tangential crossings of streamlines. This is es-
pecially true near singularities, where large changes in
direction occur over arbitrarily small lengths.

We make three primary contributions:

1. We extend the diffusion generated method for
cross field design in [19] to curved surfaces. This
method which has previously only been described
in 2D tends to have good singularity placement
in locations where singularities occur because of
boundary curvature rather than Gaussian curva-
ture of the surface, a common scenario for CAD
surfaces.

2. We prove that near singularities, streamlines of
a cross field are hyperbolic under a conformal
map. This results in a simple method to compute
streamlines in the neighborhood of a singularity
that prevents tangential crossings.

3. We describe a novel algorithm for simplifying
a quad partition with T-junctions such that
the number of partition components strictly de-
creases and the number of T-junctions decreases
monotonically.

To demonstrate these contributions, we include them
in the pipeline described in algorithm 1, which takes
as input a triangle mesh, and outputs a coarse quad
layout, possibly with T-junctions.

1.1 Related Work

Several researchers have taken an approach to generat-
ing quad layouts that is similar to the pipeline in algo-
rithm 1. Kowalski et al. [3] design a cross field by solv-
ing a PDE with a constraint applied via Lagrange mul-
tipliers. They numerically integrate streamlines from
each interior singularity and boundary corner, and
snap streamlines to singularities when they pass within
a certain tolerance of the singularity in order to ob-
tain a coarser quad layout. While streamline snapping
works well on some examples, it is not robust in gen-
eral because it can introduce tangential crossings when
more than one streamline passes nearby a singularity.
Fogg et al. [15] take a similar approach, but initial-
ize the cross field by an advancing front method and
then smooth it with the energy functional introduced
by Hertzmann and Zorin [20]. Rather than snapping
separatrices to singularities, they allow them to pass
by singularities, resulting in thin regions throughout
the partition. Ray and Sokolov [21] and Myles et al.
[22] both implement robust streamline tracing algo-
rithms based on edge maps [23], and then trace out
streamlines in parallel until their first crossing with
another streamline, forming a motorcycle graph [24].
This approach yields coarse quad patches because of
the large number of T-junctions that appear in the de-
composition. Because of the T-junctions, it is a non-
trivial matter to assign globally consistent parametric
lengths to each edge. Myles et al. [22] are able to
achieve this via a heuristic method, which includes a
collapse operation, similar to the one we describe in
section 4, used to remove edges with zero parametric
length, and 2-6 cone insertion to remove zero edges
which cannot be collapsed. They subsequently gen-
erate a globally consistent seamless parameterization
on each quad region. This method differs from our
goal in that the parameterization is not quantized (cf.
[16]) and so does not correspond to a quad mesh let
alone a coarse quad decomposition. Campen et al.
[16] compute quantized parameterizations on surfaces
by solving a combinatorial optimization problem sim-
ilar to [13] but leverage the structure of a motorcycle
graph to determine a set of linear equality constraints
which are applied to the final optimization problem,
guaranteeing a valid solution which also outperforms
previous parameterization methods, especially in cases
with a large number of singularities or large target
edge lengths. This enables them finally to extract a
coarse quad mesh. Razafindrazaka et al. [14] trace out
separatrices of a seamless parameterization to gener-
ate a graph of possible matchings between separatrices
and singularities. They then formulate the problem of
connecting singularities together as a minimum weight
perfect matching problem. In a second paper [25] they
extend their perfect matching method to work on an
input quad mesh rather than a seamless parameteriza-

tion. Zhang et al. [17] employ a similar strategy to [14],
from an input seamless parameterization they identify
candidate separatrices as monotone isolines of the pa-
rameterization in areas they call safety turning areas
which are rectangular parameterizations between op-
posite singularities. From these candidate separatrices
they choose an optimal set via a binary optimization
problem. Pietroni et al. [18] trace out candidate curves
connecting either two singularities or a singularity to
a boundary which they call field-coherent streamlines,
which can deviate from the cross field but never switch
to a different direction of the field. They then select
a valid subset of these candidate streamlines to form
a quad layout with T-junctions by solving a binary
optimization problem.

The pipeline we implement is most similar to [14, 17]
and [18] because it attempts to generate a quad lay-
out by directly manipulating the streamlines of an un-
derlying cross field. It also shares similarities with
the methods of Tarini et al. [11] and Bommes et al.
[12], which attempt to simplify the base complex of
an unstructured quad mesh via greedy application of
grid preserving operators, the difference being that our
simplification method is applied directly to the separa-
trices of a cross field rather than an input quad mesh.

2. CROSS FIELD DESIGN

Many different methods exist to design a smooth cross
field on a curved surface [20, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36], any of which might be used in algo-
rithm 1. In the interest of brevity, we will not offer a
full review of the literature here but instead refer the
reader to [34]. The diffusion generated method intro-
duced in Viertel and Osting [19] is appealing in the
context of meshing CAD surfaces because it is com-
parable in speed to the fastest methods such as those
described in Knöppel et al. [31] and Jakob et al. [33],
but also has an advantage over these methods on sur-
faces with boundary, which are common in CAD and
meshing for FEM, because it tends to place singular-
ities symmetrically even when the surface is flat (see
Figure 1).

Figure 1: Left to right, a comparison of singularity place-
ment from cross fields described in Knöppel et al. [31],
Viertel and Osting [19], and Jakob et al. [33]. Singular-
ities with positive and negative index are shown in blue
and red respectively.

In this section, we extend the diffusion generated
method for cross field design to curved surfaces. We
use this method of cross field design as the first step
in our pipeline (algorithm 1). In section 2.1, we first
review some tools from the literature that have been
used previously to develop cross field design methods
on surfaces. In section 2.2, we describe the implemen-
tation details of our method.

2.1 Cross Fields on Surfaces

The main difficulty in extending flat 2D methods to
curved surfaces is the lack of a global coordinate sys-
tem. In this section, we use concepts from differential
geometry to formulate the cross field design problem
on 2-manifolds. We consider a smooth, orientable 2-
manifold M embedded in R3 and endowed with the
Riemannian metric induced by the the Euclidean met-
ric on R3. Let T = {z ∈ C : |z| = 1} be the circle
group with group operation given by complex multi-
plication and let ρ(4) be the set of the 4th roots of
unity. A cross is an element of C = T/ρ(4). There
is a canonical group isomorphism R : C → T called
the representation map given by R([c]) = c4, where c
is any representative member of the equivalence class
[c] ∈ C. We will refer to u = c4 as the representa-
tion vector for [c]. The inverse representation map
R−1 : T → C assigns u ∈ T to R−1(u) = [4

√
u], the

equivalence class of the 4th roots of u.

Let Tp be the tangent space of M at a point p. The
disjoint union of all tangent spaces on M is called the
tangent bundle and is denoted TM . For each tangent
space Tp we select a coordinate basis, { ∂

∂x1
|p, ∂

∂x2
|p}.

We also associate with each point p ofM a space home-
omorphic to C, which we call the cross space at p. We
denote this space by Cp. The disjoint union of all cross
spaces of M defines a fiber bundle that we refer to as
the cross bundle. A section of the cross bundle, or a
choice of one cross per cross space, is called a cross field
on M . We make the natural identification between Tp
and the complex plane by the map (a, b) 7→ a + ib.
In this way, we can identify a cross, [cp], in Cp as an
unordered set of four orthogonal unit vectors in Tp,
which we call the cross component vectors. This also
allows us to define a representation map Rp at each
point with respect to the local coordinate basis, and a
representation vector up = Rp([cp]), which we identify
with the corresponding unit tangent vector in Tp. For
simplicity, we will use complex notation for equations
throughout the paper.

In 2D cross field design, the goal of designing a smooth
cross field is often formulated as designing a harmonic
representation vector field u [19, 34]. That is, to min-
imize the Dirichlet energy

E[u] :=
1

2

∫
M

|∇u|2dA (1)

with the constraint that |u| = 1 at each point of the
domain. We note that in general, this problem is ill-
posed; however, generalized solutions exist if a finite
number of singular points are removed fromM [19, 37].

This strategy can be extended to surfaces by replacing
the gradient operator ∇ with the appropriate connec-
tion on the tangent bundle. The Levi-Civita connec-
tion provides a way to compare vectors on the tangent
bundle that preserves the notion of inner product be-
tween tangent spaces. That is, if Ppq is the parallel
transport function for the Levi-Civita connection be-
tween Tp and Tq, and if v1, v2 ∈ Tp, then

〈v1, v2〉TP = 〈Ppq(v1), Ppq(v2)〉Tq .

Visually, the effect of using this connection in equation
1 is that a minimizing vector field appears smooth (see
Figure 2).

In order to extend the strategy from 2D, using equa-
tion 1 to design a smooth cross field, we seek a connec-
tion, ∇Q, on the tangent bundle with corresponding
parallel transport function, Q, appropriate for trans-
porting representation vectors. We choose Q in such
a way that the component vectors of the correspond-
ing crosses are transported by P , the parallel trans-
port function corresponding to the Levi-Civita connec-
tion. Let γpq(t) : [0, 1]→M be a Levi-Civita geodesic
connecting points p and q such that γpq(tp) = p,
γpq(tq) = q, and tp, tq ∈ (0, 1). Let φp be the signed
angle from the velocity vector γ′pq(tp) to ∂

∂x1
|p and let

φq be the signed angle from γ′pq(tq) to ∂
∂x1
|q. Then if

φpq = φp − φq, Ppq(v) = eiφpqv gives the Levi-Civita
parallel transport function, Ppq, in coordinates with
respect to the basis { ∂

∂x1
|p, ∂

∂x2
|p}.

Then, Qpq, the parallel transport function for repre-
sentation vectors between p and q, must satisfy

Qpq(Rp([cp])) = Rq([Ppq(cp)]). (2)

We can write cp = ei(θp+2kπ/4) for some k ∈ {0, 1, 2, 3}
where θp is the signed angle from ∂

∂x1
|p to one of the

component vectors of [cp]. We can now write equation
2 as

Qpq(e
4iθp) = e4i(θp+φpq).

It follows that Qpq(v) = e4iφpqv. In addition, we can
define parallel transport on the cross bundle from Cp
to Cq by R−1

q ◦Qpq ◦Rp. We can now use ∇Q in equa-
tion 1 to define a smooth cross field. In the following
section, we define the discrete Laplace equation cor-
responding to this energy and describe the diffusion
generated method for cross field design in detail.

2.2 Discrete Formulation

On each node ni of the input triangle mesh, T, a nor-
mal vector, ~ni, is computed as an average of the vec-

Table 1: Boundary index assignment

Interior Angle Index

(0, 3π
4

) 1
4

[3π
4
, 5π

4
] 0

(5π
4
, 7π

4
] − 1

4

(7π
4
, 2π) − 1

2

tors normal to each adjacent face weighted by the tip
angle at the node. This normal vector in turn defines
the tangent space, Ti, at node ni. We then arbitrar-
ily select a vector in Ti, which we assign to be ∂

∂x1
|i.

Then ∂
∂x2
|i is the vector such that ∂

∂x1
|i × ∂

∂x2
|i = ~ni.

Let eij be the edge connecting nodes ni and nj . We
compute the value φi as the signed angle between the
projection of eij onto Ti and ∂

∂x1
|i. We then store the

value φij = φj − φi, on the edge eij .

We now define the discrete parallel transport func-
tion Qij : Ti → Tj by Qij(u) = e4iφiju, which parallel
transports representation vectors across eij . This al-
lows us to compare two representation vectors u ∈ Ti
and v ∈ Tj by

|v −Qij(u)|2.

In order to state a well-defined problem, we apply a
Dirichlet condition. In the case of closed manifolds,
we arbitrarily fix the orientation of a single cross. In
the case of a bounded manifold, we apply a Dirich-
let boundary condition by fixing ui on each boundary
node. We make the convention that the cross field in-
dex of a boundary node (see [19]) is assigned according
to Table 1.

For a boundary node ni of index 0 or − 1
2
, we com-

pute the outward pointing unit normal vector of each
boundary edge adjacent to ni lying in the plane of the
adjacent boundary face. We then project these vectors
into the tangent plane at ni, and bisect them with a
unit vector, di, which averages the directions of the
facet normals. Since we want to align the cross to this
vector, we set ui = d4i . For nodes of index ± 1

4
, di

is first rotated π/4 radians about ni in the positive
direction before computing ui.

2.2.1 The Diffusion Generated Method
for Cross Field Design

Intuitively, we would like to solve until stationarity the
time dependent problem

ut(t, x) = ∆u(t, x) x ∈M
u(t, x) = g(x) x ∈ ∂M (3)

u(0, x) = u0(x) x ∈M

Figure 2: A comparison of fields and connections. Left: A smooth vector field as measured by the Levi-Civita connection.
Center: A smooth vector field as measured by the connection ∇Q. Right: The cross field corresponding to the vector
field in the center.

with the constraint that |u(x)| = 1 pointwise, rather
than directly solving the stationary problem with the
same constraint. This key difference allows one to
avoid the necessity of using a non-linear solver be-
cause the pointwise constraint can be enforced simply
by normalizing the solution in between discrete time
steps (see [38, 39]). We proceed by defining a discrete
Laplacian operator, ∆Q corresponding to the connec-
tion ∇Q.

∆Q(u)|i =
1

|N (ni)|
∑

nj∈N (ni)

(uj −Qij(ui)) (4)

where N (ni) is the one-ring neighborhood of ni and
|N (ni)| is the area of that neighborhood. This dis-
crete Laplacian operator allows us to assemble a dis-
crete diffusion equation using a backward Euler time
discretization;

(I − τA)u = u0 + τb (5)

where A is the matrix form of ∆Q. We iteratively solve
this equation for a small time step τ and pointwise
renormalize the solution between each iteration. The
algorithm is described in detail in algorithm 2.

3. GENERATION OF A QUAD LAYOUT
WITH T-JUNCTIONS

After designing a cross field on a triangle mesh, the
next step in algorithm 1 is to construct a quad layout
with T-junctions. This is accomplished in two steps:

1. Determine singularity locations and ports.

2. Trace out separatrices of the cross field.

In section 3.1, we detail the first step of this process.
In section 3.2, we describe our approach to streamline
tracing, including our novel method for computing the
trajectory of a streamline in the neighborhood of a

Algorithm 2 A diffusion generated method for de-
signing smooth cross fields

Let u0 be the solution to Au = b.
Fix τ , δ, and set k = 0.
while ‖uk − uk−1‖ > δ, do

Solve the discrete diffusion equation,

(I − τA)uk+1 = uk + τb (6)

for j ∈ [0, n] do

Set uk+1
j =

uk+1
j

|uk+1
j |

end for
k + +

end while

singularity. In section 3.3, we discuss stopping condi-
tions for the streamline tracing algorithm as well as
a heuristic method for handling tangential streamline
crossings that occur commonly when tracing stream-
lines via numerical integration.

3.1 Singularity and Port Detection

Singularity and port detection in a cross field de-
fined per node is well documented in the literature
[3, 15, 19, 31, 33]. We use methods that have been de-
veloped previously, but include a description here for
completeness.

3.1.1 Matchings

Across each edge, we assume that crosses make the
smallest rotation possible. This is called the principle
matching of the crosses. If ui = e4iθi , then the change
in cross orientation between two nodes ni and nj , de-
noted ∆ij , is the number between −π

4
and π

4
given

by

∆ij = (θj − (φij + θi))(mod π/2)− π/4.

3.1.2 Singularity Detection

The index of a triangle, tijk, with nodes ni, nj , and
nk is the number given by

I (tijk) =
∆ij + ∆jk + ∆ki − φij − φjk − φki

2π
.

Practically, this is the number of turns that a cross
makes while circulating the triangle, which is always
an integer multiple of 1

4
. A triangle is singular if its in-

dex is non-zero. Summing the changes in cross orienta-
tion along each edge, we compute the total circulation
of the cross around the triangle. On a flat surface, the
total circulation must be a multiple of π/2; however,
on curved surfaces, this is not the case. In general, a
vector in the tangent bundle of M parallel transported
along a closed curve does not always return to the same
orientation after circulating the curve. To mitigate the
effects of holonomy while transporting a cross around
the triangle, we subtract from the total circulation the
angle defect that occurs when parallel transporting a
vector around the triangle via our discrete connection.
This angle defect is given by φij+φjk+φki. Subtract-
ing the angle defect from the total circulation leaves
us with a number that is a multiple of π/2, from which
we compute the index.

After we determine singular triangles, we approximate
the location of the singularity within the triangle by
taking the barycenter of the triangle. We choose an
arbitrary node, n, on the triangle and rotate the cross
component vectors at that node into the plane of the
face. We use the ray starting at the barycenter and
passing through n as a reference axis, and compute
the angle α that the nearest cross component vector
makes with the reference axis. We then compute the
angles where streamlines exit the singularity (ports)
as α + 2πk

4−d where d/4 is the index of the singularity
(see [19]).

3.2 Separatrix Tracing

After designing a cross field on T , we build an ini-
tial quad partition by tracing separatrices of the cross
field. Below, we describe the methods used for tracing
separatrices in non-singular and singular triangles.

3.2.1 Non-Singular Triangles

In non-singular triangles tijk, we project the crosses on
each corner of tijk into the plane of the triangle. We
define a reference coordinate axis in that plane, and
compute a representation vector for each cross with re-
spect to this reference coordinate axis. We interpolate
the argument of the representation vector linearly over
the triangle. This is possible because in a non-singular
triangle, the argument is continuous as it circulates the

boundary. Using this interpolation, we trace out the
streamlines using Heun’s method [3].

3.2.2 Singular Triangles

Previously, no streamline tracing methods have been
suitable for accurately tracing streamlines in the
neighborhood of a singular triangle. Numerical in-
tegration methods such as Heun’s method and other
Runge-Kutta methods [3, 15, 19, 40] are inaccurate in
the neighborhood of a singularity since cross directions
can change arbitrarily fast. They frequently compute
discretizations of the streamline that “cut the corner”
rather than traversing around the singularity as they
should (see Figure 3). Streamline tracing methods
based on edge maps [21, 22] are guaranteed to never
result in tangential crossings, but since paths are dis-
cretized by straight lines through each triangle, they
are limited in their ability to resolve the path of a tra-
jectory around a streamline by the number of triangles
that meet at a singular point.

Figure 3: An illustration of a numerically traced stream-
line that “cuts the corner” and does not traverse around
the singularity.

Here we develop a new method to accurately trace
streamlines within the neighborhood of a singularity
to any predefined resolution. This method guarantees
that no tangential intersections of streamlines will oc-
cur within the neighborhood. We first prove that in
R2, trajectories of streamlines through the neighbor-
hood of a singularity are hyperbolas under a conformal
transformation.

Let f be a canonical harmonic cross field (see [19]) on
a domain D ⊂ R2. Let a ∈ R2 be the location of a
singularity of index d

4
where d is an integer ≤ 1. Con-

sider the open ball B(a, r0) of radius r0 > 0 centered
at a. We seek an approximation for the trajectory of
an arbitrary streamline passing through a point q 6= a
in B(a, r0).

The cross field, f(z), partitions B(a, r0) into 4 − d
evenly angled sectors bounded by separatrices of the
cross field [19]. In each sector, the cross field defines
a local (u, v) parameterization. Let S be the open
sector containing q, and let s0 and s1 be the separa-
trices bounding S ordered counterclockwise. Because

the cross field defines a local (u, v) parameterization
on S, there are two streamlines passing through q, one
crossing s0 orthogonally, the other crossing s1 orthog-
onally. Without loss of generality, we consider γ, the
streamline crossing s1 orthogonally. This streamline
crosses s1 into S′, the open sector adjacent to S that
is also bounded by s1, and then exits B(a, r0) (see
Figure 4).

q

s0

s1

S

S' g

g(s0)

s2
g(s1)

g(s2)

g(q)g()

Figure 4: Streamlines in a neighborhood of a singularity
become hyperbolas under a conformal map g.

By [19], the cross field in B(a, r0) can be written as

f(z) = ei(
dθ
4

+ 2kπ
4

) + o(r)

where d/4 is the index of the singularity, z = reiθ,
k ∈ {0, 1, 2, 3}, and θ = 0 corresponds to s0. For
r < r0 where r0 is sufficiently small, we make the
approximation

f(z) = ei(
dθ
4

+ 2kπ
4

).

Streamlines of the cross field are given by

z′ = f(z).

Since we are looking for the streamline crossing
through s1, we consider k = 0. Thus, we are looking
for the set C = {z(t) ∈ B(a, r0) | t ∈ (ta, tb)} where
z(t) on (ta, tb) is the solution to the problem

z′ = ei
dθ
4 (7)

z(0) = (rq, θq) (8)

in D = {z = reiθ | r ∈ (0, r0), θ ∈ (0, 4π
4−d)}.

Proposition 1. C = {(x + iy)−(4−d)/8 |xy = A, x ∈
Ix} for some constant A on some interval Ix.

Proof. Consider a differentiable curve in D given by
z(t) for t ∈ (a, b). Consider the function g(z) =
z(4−d)/8 that maps D to D̃, the sector of the upper
right quadrant given by {w = ρeiϕ | ρ ∈ (0, ρ0 =

r
(4−d)/8
0), ϕ ∈ (0, π

2
)} (see Figure 4). Let w(t) =

g(z(t)) for t ∈ (a, b). Taking the derivative of both
sides, we have

w′(t) = g′(z(t))z′(t)

since g′(z) 6= 0 in D, we have

arg (g′(z(t))z′(t)) = arg g′(z(t)) + arg z′(t)

=

(
4− d

8
− 1

)
θ + arg(z′(t))

In the case that z(t) is a solution of equation 7, we
have

argw′(t) =
dθ

4
+

(
4− d

8
− 1

)
θ

= − (4− d)θ

8
= −ϕ

Thus w′(t) = α(t)e−iϕ for some function α(t). Writing
w(t) = x(t)+iy(t), we have x′(t) = α(t) cos(ϕ), y′(t) =
−α(t) sin(ϕ). Thus

dy

dx
= − tan(ϕ) = − y

x
=⇒ y =

A

x

for some constant A. This equation describes the fam-
ily of hyperbolas in the first quadrant with asymptotes
at ϕ = 0 and ϕ = π

2
. The curve from this fam-

ily passing through the point g(q) = ρqe
iϕq is given

by {x + iy |xy = Aq}, where Aq = ρ2q sinϕq cosϕq.
The curve C can be recovered by taking the in-
verse image of this set under the mapping g, that is
C = {(x + iy)−(4−d)/8 |xy = Aq, x ∈ Ix} where Ix is
an interval such that (x + iy)−(4−d)/8 ∈ B(a, r0) for
x ∈ Ix.

Proposition 1 provides a simple method for computing
the trajectory of a streamline through a singular trian-
gle. We make the assumption that within the triangle,
the estimate

f(z) ≈ ei(
dθ
4

+ 2kπ
4)

holds. Here again θ = 0 corresponds to the nearest
separatrix clockwise from q. Making this assump-
tion, we simply compute points along the hyperbola
xy = Aq, and take the inverse image of each point. We
use these points as discretization points of the stream-
line so long as they lay within the singular triangle.
Since hyperbolas are convex, and g−1 preserves the
order of points along rays, in order to guarantee that
two streamlines don’t intersect tangentially, it is suf-
ficient to evaluate the points of the hyperbola along
predefined rays from the singular point.

3.3 Partition Construction and Tangential
Crossings

By the Poincaré-Bendixson theorem for manifolds [41],
streamlines of a cross field on a bounded manifold M
can do one of the following:

1. Connect one or more singularities in a homoclinic
or heteroclinic orbit

2. Exit the boundary

3. Approach a limit cycle

4. Approach a limit set that is all of M . In this case,
M must be a torus.

Because we are tracing out separatrices on a discrete
mesh, in practice, they never line up perfectly with
another singularity, so homoclinic and heteroclinic or-
bits will never occur. Thus streamlines in the discrete
case can only either exit the boundary, or continue
forever approaching either a limit cycle, or a limit set
that is all of M . In order to generate a quad parti-
tion via separatrix tracing, separatrices that continue
forever must be cut off after crossing some separatrix
orthogonally. In practice, we use two stopping con-
ditions: separatrices are traced until they either exit
the boundary or cross the same separatrix more than
once. The second condition is a simple way to elimi-
nate the possibility of tracing out a separatrix forever,
but can potentially create T-junctions on separatrices
that would eventually exit the boundary.

When tracing streamlines using a numerical method
such as Heun’s method, there is no guarantee that
streamlines won’t cross each other or exit the bound-
ary tangentially. This becomes especially problematic
along boundaries of meshes where the underlying ge-
ometry has high curvature but few triangles, resulting
in few crosses that are actually aligned with the dis-
crete boundary of the triangle mesh. Tangential cross-
ings are problematic because the regions produced via
separatrix tracing are no longer guaranteed to be four-
sided. Assuming a sufficiently fine triangle mesh along
the boundary such that no separatrices exit tangen-
tially, we observe in practice that tangential crossings
on the interior typically occur in one of two cases. The
first case is when one or more separatrices that ap-
proach a limit cycle are traced out for several rota-
tions around the limit cycle. This problem is virtually
eliminated by our approach of cutting off separatrices
after they cross the same separatrix more than once.

The second case where tangential crossings occur is
when there is a very small misalignment of singulari-
ties, such that two different separatrices follow virtu-
ally the same path. If the two separatrices are heading
in opposite directions when the crossing occurs, then
this problem can easily be fixed by cutting both sep-
aratrices off at the tangential crossing and combining
them into a single separatrix, now connecting the two
singularities in a heteroclinic orbit. If both separa-
trices are traveling in the same direction when they
cross tangentially, there is no analogous simple opera-
tion to combine the two. However, we have observed

that in practice, this almost always occurs when one of
the separatrices passes very near the singularity where
the other began. To mitigate the occurrence of tan-
gential crossings when both separatrices are traveling
in the same direction, we add a third stopping criteria
for tracing separatrices: we cut off any separatrix in-
side of a singular triangle that orthogonally crosses one
of the separatrices leaving the singularity. This third
stopping condition greatly reduces the number of tan-
gential crossings that occur when both streamlines are
traveling in the same direction.

4. PARTITION SIMPLIFICATION

The misalignment of singularities when tracing out
separatrices often results in small regions and limit
cycles in the initial partition that would not exist if
the separatrices coincided. In this section, we present
a robust algorithm to simplify the partition obtained
by naive separatrix tracing. The central step in the
algorithm is an operation that extends the chord col-
lapse operation for quad meshes [42, 43] to quad lay-
outs with T-junctions. A similar collapse operation
appears in Myles et al. [22].

A chord in a quad mesh is a maximal sequence of
quads, q1, q2, . . . , qn such that qi is adjacent to qi+1,
and qi−1 and qi+1 are on opposite sides of qi. Figure 5
shows a chord of a quad mesh highlighted in blue. A
partition obtained from streamline tracing is a quad
layout with T-junctions, or a T-layout for short. We
say that each component of a T-layout has four total
sides, 2 pairs that are opposite each other. A side
consists of at least one edge or more when T-junctions
occur on that side. A chord of a T-layout is a maximal
sequence of components, c1, c2, . . . , cn such that ci is
adjacent to ci+1, ci−1 and ci+1 are on opposite sides
of ci, and no T-junction exists between ci and ci+1.
Figure 6 top shows various chords in a T-layout.

Figure 5: A chord in a quad mesh.

We call the set of edges shared by two partition com-
ponents in a chord the transverse rungs of a chord. In
the case that a chord begins or ends at a T-junction
or on a boundary, we also include the first and last set
of edges as transverse rungs of the chord. We also say
that a chord has two longitudinal sides that consist

Figure 6: Illustrations of chords in two T-layouts. Top:
Chords in a T-layout shown in various colors. The yel-
low and cyan chords overlap on the green component,
illustrating how each component is part of two chords.
Bottom: The four patches of a chord highlighted in
cyan, green, blue, and red.

of all the edges of the partition components that are
orthogonal to the transverse rungs.

A patch is a maximal subset of consecutive compo-
nents of a chord such that singularities only occur on
the first and last transverse rungs. A chord is parti-
tioned into one or more patches, and singularities can
occur only on the corners of patches. Figure 6 bottom
shows the patches of a chord.

Figure 7: The four collapsible chords of a partition. Zip
patches are highlighted in red and non-zip patches are
highlighted in blue.

Our definition of chord collapse on a T-layout is mo-
tivated by the goal of simplifying the partition by re-
moving one separatrix from each of two singularities,
and then connecting singularities together by a single
curve. We say that a patch of a chord in a T-layout is
collapsible if it satisfies the following:

1. No singularities are connected across any trans-

verse rung of the patch.

2. No singularity is connected to a boundary across
any transverse rung of the patch.

3. If the patch starts or ends at a T-junction, then
one of the following must be satisfied:

(a) The node opposite the T-junction on the
same transverse rung is a singularity.

(b) The node opposite the T-junction on the
same transverse rung is another T-junction
with the same orientation.

(c) The node on the opposite corner of the
patch from the T-junction is a singularity.

We say that a chord is collapsible if all of its patches
are collapsible.

The first and second conditions prevent the possibil-
ity of having to combine two singularities into a sin-
gle one or move a singularity to the boundary. They
reflect an assumption that throughout the simplifica-
tion process, we would like to keep the singularity set
of the cross field and only modify the connectivity of
the singularity graph. The third condition prevents
the introduction of new T-junctions when collapsing
chords or other invalid configurations such as a node
with only two edges meeting at a corner. Figure 7
shows the collapsible chords for a given quad layout.

Given these assumptions, we can define a collapse op-
eration on a collapsible chord. We define this oper-
ation by defining two sub-operations on patches. On
a collapsible chord, any patch will either have singu-
larities on opposite corners, or it will have one or two
singularities only on one longitudinal side. We refer to
the former as a zip patch, and the latter as a non-zip
patch. The green patch in Figure 6 bottom is a zip
patch and the other 3 are non-zip patches.

The collapse operation on a non-zip patch is to simply
delete the edges on the longitudinal side without any
singularities. The operation on a zip patch is to re-
move both longitudinal sides of the patch and replace
them with a single line that connects the two singular-
ities together. In practice, we take a weighted average
of the two sides, figuratively “zipping” the two edges
together to form the new line. If any T-junctions occur
on a side that is deleted during a collapse, the hanging
separatrix is simply extended after the collapse oper-
ation until it crosses the next separatrix. Figure 8
illustrates three consecutive chord collapses used to
simplify a partition. The next chord to be collapsed
in each frame has its zip patches highlighted in red
and its non-zip patches highlighted in blue.

This collapse operation effectively replaces the two
longitudinal sides of a chord with a single curve pass-
ing through each of the singularities on either side.

It is easy to see that the resulting graph is still a T-
layout because the local connectivity at singularities
is not changed and other crossings of separatrices are
either unaffected or simply removed (see the proof of
theorem 5.4 in [19]). We summarize this section with
the following proposition,

Figure 8: Three consecutive chord collapses simplify the
quad layout. Zip patches to be collapsed at each step are
colored in red and non-zip patches are colored in blue.

Proposition 2. Each chord collapse operation re-
moves a chord from the T-layout, resulting in another
T-layout with the same irregular nodes on the bound-
ary and interior. A series of collapses monotonically
reduces the number of T-junctions in the layout, and
strictly decreases the number of partition components.

This simple operation forms the core of our partition
simplification algorithm. As Figures 8 and 9 illustrate,
repeated application of this operation has the potential
to dramatically simplify a T-layout obtained from sep-
aratrix tracing. We take a greedy approach, collapsing
first the thinnest chord that satisfies all conditions for
collapse. The full loop is described in algorithm 3.

Algorithm 3 Partition simplification

Let Γ be the set of collapsible chords of the partition
while |Γ| > 0 do

if No chords meet the conditions for collapse
then

Stop.
else

Collapse the chord with the smallest minimum
width
Determine new set of collapsible chords Γ

end if
end while

4.1 Conditions for Collapse

It is not always beneficial to collapse every collapsible
chord. Figure 7 highlights four collapsible chords in

Figure 9: Before and after partition simplification. Top
Left: The initial partition obtained by tracing separatri-
ces. Top Right: A simplified partition after 10 chord
collapses. Bottom: A close up of the top left corner of
the geometry reveals extremely small components that
occur because of misalignment in singularities in the ini-
tial partition.

a partition, but by most measures, it would only be
beneficial to collapse the thinnest of the chords, since
collapsing the others would lead to severe deformation
in the newly created partition components adjacent to
the zipped edge. The decision of whether to collapse is
also application dependent. For example, in the final
chord collapse in Figure 8, the difference in length on
opposite sides of the regions adjacent to the zipped
separatrix may outweigh the cost of a slightly more
complex partition, depending on the application.

A complete exploration of how different applications
might benefit from various collapse conditions will not
be treated here, rather we only describe the conditions
used in our examples. We define an energy for each
patch and we subsequently define the energy of the
chord as the minimum energy of any of its patches.
The collapse condition evaluates to true if the energy
is positive and false if the energy is negative.

For a non-zip patch, we set the energy to a positive
constant value. The exact value is not important, this
simply reflects the notion that collapsing a non-zip
patch is not detrimental to the overall quality of the
partition.

For zip patches, let w be the mean of the length of
each transverse rung of the patch. Let l be the mean
of the length of each longitudinal side of the chord.
The energy for the patch is then defined as

e =
π

8
− arctan

w

l
.

If the zip patch were perfectly rectangular, then
arctan w

l
would be equivalent to the angle that the

diagonal makes with the base of the rectangle. In

Table 2: Basic data for our pipeline on several models

Cross Field Tracing Simp. Components T-junctions Chord
Model n (s) (s) (s) Before After Before After Collapses

cognit 7274 0.444 0.274 0.450 583 190 86 0 72
chainr5 4781 0.105 0.318 0.494 440 176 88 0 61
gluegun 1842 0.074 0.124 0.254 725 189 36 0 45

sprayer 954 0.037 0.027 0.011 29 12 6 0 4
faceplate 47655 7.036 0.989 2.270 1500 227 120 0 101
part29 3265 0.121 0.051 0.023 66 22 3 0 6

test1 2703 0.115 0.044 0.027 47 19 1 0 5
engine2 564 0.025 0.053 0.057 194 63 11 1 15
pump 2592 0.067 0.249 0.821 1014 303 88 4 80

rough terms, this condition prevents chord collapses
that result in a large deformation of the angles that
separatrices make at singularities.

We found this particular collapse condition and the
heuristic of collapsing thinnest chords first to produce
quads with more rectangular corners than other col-
lapsing strategies that we tried. Figure 10 shows a
comparison between the results of collapsing a given
initial partition using the strategy that we describe
versus the strategy of greedily collapsing chords via
our chord collapse operation, but using an energy anal-
ogous to that used in Tarini et al. [11] and Razafind-
razaka et al. [14].

While we found the strategy of collapsing chords ac-
cording to the conditions specified in this section to
work well in our examples, it is a simple matter to sub-
stitute the sorting function and conditions for collapse
in this algorithm with whatever is deemed appropriate
for the application at hand.

5. NUMERICAL EXPERIMENTS

We tested our algorithm on 100 triangle meshes of sur-
faces with boundary derived from CAD models. All of
the models except for the “faceplate” model are from
a test suite used for development of the CUBIT soft-
ware [44]. The “faceplate” model is the faceplate of the
motor from the fan model at https://grabcad.com/

library/electric-fan-model-1. For the diffusion
generated method, we used a time step τ = 1/λ1 where
λ1 is the first eigenvalue of the matrix A. We contin-
ued the iterations until ‖~uk − ~uk−1‖ <

√
2n × 10−6

where n is the number of free nodes in the mesh. All
examples were run on an Intel Core i5-2420m on a
single thread.

In Table 2 and Figures 11 to 13, we present nine exam-
ple models that are representative of the models used
and results obtained in our experiment. Table 2 shows
data for the number of nodes in the triangle mesh,

Figure 10: A comparison of collapse strategies. Top:
The partition obtained by collapsing an initial partition
according to the strategy defined in algorithm 3. Bot-
tom: Result of collapsing the same partition using a
greedy strategy collapsing chords in the order of high-
est to lowest energy using an energy analogous to that
used in Tarini et al. [11] and Razafindrazaka et al. [14].
This strategy is over-aggressive in collapsing chords and
we conclude that the energy does not work well with the
chord collapse approach.

timing for the diffusion generated method, stream-
line tracing, and partition simplification methods, the
number of components and T-junctions before and af-
ter simplification, and the total number of chord col-
lapses performed. Figures 11 to 13 show the initial
partition obtained via streamline tracing on the top
and the final simplified partition on the bottom. The
models in the table are shown in the same order as
they appear in the figures, and the horizontal lines in
Table 2 identify the cutoffs between figures.

Overall, we observe that our algorithm performs well

Figure 11: Examples of partitions simplified by our algorithm. The models from left to right are cognit, chainr5, and
gluegun. Top: The initial partition obtained by tracing streamlines of the cross field obtained via the diffusion generated
method. Bottom: A simplification of the partition on the top via our method.

Figure 12: More examples showing the models sprayer, faceplate, and part29. See the caption for Figure 11.

Figure 13: More examples showing the models test1, engine2, and pump. See the caption for Figure 11.

both in terms of efficiency and results. The timings
reported for our cross field design method are compa-
rable to those for the fastest cross field design meth-
ods [31, 33]. The timings for partition simplification
reported in this paper are approximately an order of
magnitude faster than those reported in [11] and [14]
on similar sized models. Visually, the coarseness of
the final quad layouts appear to be comparable across
all three methods; however, a better comparison using
the same models with each method is needed.

Out of the database of 100 models that we tested,
eight models still had T-junctions after the simplifica-
tion process. On four of those models, the T-junctions
could be removed by simply continuing to trace the
streamlines until they reached the boundary; see Fig-
ure 14 top. On the other four, there was at least
one T-junction where the corresponding streamline ap-
proached a limit cycle. In each case that we observed,
all T-junctions could have been removed from the ini-
tial partition by collapsing the chords in a different
order (Figure 14 bottom), which suggests that per-
haps a better collapse order would prioritize or even
require collapsing chords that end in T-junctions.

6. DISCUSSION

In this paper, we have further developed three parts
of the pipeline described in algorithm 1: an efficient
method for high-quality cross field design, a method

to accurately compute the trajectory of streamlines
in the neighborhood of a singularity that avoids tan-
gential crossings, and a robust partition simplification
algorithm. We implemented a pipeline including these
improvements, and executed our code on a database
of 100 CAD surfaces. In all cases, the number of par-
tition components and T-junctions was significantly
reduced, and in 92 out of 100 cases we were able to
generate a coarse quad layout with no T-junctions.

The diffusion generated method is well suited for cross
field design on CAD surfaces because it results in
smooth boundary aligned cross fields with good sin-
gularity placement near the boundaries. It is also
comparable in speed to the fastest cross field design
methods; however, a more in-depth analysis is needed
to fully compare the results.

Our novel method for tracing the trajectories of
streamlines near singular points is simple and allows
for accurate computation while avoiding tangential
crossings. Our implementation away from singulari-
ties is, however, limited by our choice of a node-based
cross field representation, as we are not aware of any
methods for such a representation that guarantee that
streamlines in regular triangles will not cross tangen-
tially. Our method could be improved by extending it
to work in conjunction with streamline tracing meth-
ods such as Ray and Sokolov [21] and Myles et al. [22].

Our partition simplification algorithm is based on a

Figure 14: T-junctions not eliminated by our method.
Top: A T-junction that can be removed simply by trac-
ing the streamline until it reaches the boundary. The T-
junction occurred here because the separatrix intersected
another separatrix while passing through a singular trian-
gle. Collapsing the chord (highlighted in blue, full chord
not shown) would remove the T-junction, but the energy
condition for collapse was not met. Bottom: A T-
junction resulting from a singularity approaching a limit
cycle. Zip and non-zip patches of the chord adjacent to
the T-junction are marked in red and blue respectively.
The colored chord is not collapsible because further up
the chord a singularity is opposite a transverse rung (not
shown). In the initial partition, this T-junction could
have been removed by a chord collapse without this ob-
struction.

simple chord collapse operation and is guaranteed to
strictly decrease the number of partition components
at each step as well as monotonically decrease the
number of T-junctions. While our collapse operation
is similar to the operation for collapsing zero-chains in
Myles et al. [22], the context in which the operation
is applied is different. Perhaps the most important
difference is that the T-mesh in [22] is a motorcycle
graph, where separatrices are cut off after their first
crossing with another separatrix, while in our method
we trace out separatrices further, and cut them off
according to conditions which allow for the collapse
to have the effect of connecting two singularities to-
gether. This is illustrated in Figure 15. Our method
also collapses chords much more aggressively than [22],
as the primary goal of our algorithm is to generate a
coarse quad layout (without T-junctions) whereas the
reason for collapsing in [22] is to remove zero-chains
which would result in a degenerate parameterization.
The collapsing order in our algorithm prioritizes col-

Figure 15: A simple geometry where a motorcycle graph
can not be simplified via a chord collapse. Top: The
partition traced out according to the conditions in section
3.3. The chord running lengthwise through the center
can be collapsed. Bottom: The motorcycle graph for
the same geometry. The collapsible chord from above is
never formed because separatrices are cut off prior to it
forming.

lapsing thin regions first whereas in [22] there is no
discussion of order. There are also some subtle differ-
ences between the definitions of the operations them-
selves. For example, in [22], the definition of collapsi-
ble zero-chains depends on the assignment of paramet-
ric lengths to edges of the input T-layout, whereas our
definition of a chord is strictly geometric. Further,
the notion of a patch in our operation allows for zip
operations spanning multiple quads where a zip like
operation in [22] always occurs across a single quad.
The cumulative effect of these differences is that we
are able to demonstrate that the iterative collapse of
chords can be an effective tool for generating coarse
quad layouts, many times eliminating all T-junctions,
whereas in [22], the collapse operation is used in a lim-
ited scope, with the purpose of ensuring global consis-
tency of their parametric length assignment.

Our collapse method works directly on streamlines, so
it does not require pre-meshing like methods such as
Tarini et al. [11] and Bommes et al. [12], or prior com-
putation of a seamless parameterization like Razafind-
razaka et al. [14], Campen et al. [16], or Zhang et
al. [17]. Since our method requires tracing stream-
lines accurately enough to avoid tangential crossings,
the number of streamlines to be traced in our method
scales linearly with the number of singularities as op-
posed to the method of Pietroni et al. [18], who allow
computation of streamlines that cross tangentially at
the cost that the number of streamlines to be drawn
increases with combinatorial complexity as the num-
ber of singularities increases.

Each of [14, 16, 17, 18] formulate their problems as
binary optimization problems, however, in order to
achieve reasonable run times, they each significantly
prune the search space by employing some clever
method which leverages the structure of the T-layout
generated by the separatrices of the underlying cross
field or parameterization. While it appears that our

Figure 16: A surface where the cross field contains a limit cycle, resulting in a T-junction that cannot be removed without
the introduction of additional singularities. Left: A boundary aligned cross field is shown in blue. The T-layout obtained
by tracing out streamlines is shown in red. The yellow streamline begins at the geometric corner, follows the red curve of
the partition, and continues on to converge to a limit cycle. Right: Because of the limit cycle, a pair of 3- and 5-valent
nodes is needed to mesh the region adjacent to the T-junction.

method is at a disadvantage because it takes a greedy
approach, it is not clear to what degree the final re-
sults of each method are driven by heuristics or op-
timization. In addition, its not clear how well indi-
rect objectives such as the total length of separatrices
weighted by how far they drift from the underlying
field, reflect objectives such as minimizing the num-
ber of quad components, or maximizing the minimal
width of a chord which can be pursued directly via our
method. A specific application with objectively stated
goals and a common set of models is needed for a clear
comparison between the quality of the quad layouts
generated by all of the methods mentioned above.

The main downside of our partition simplification
method is that it does not completely eliminate T-
junctions from the layout. It is not always possible to
produce a quad layout with no T-junctions for a given
set of singularities, so an important direction for fu-
ture work is to develop a method that uses strategic
insertion or removal of singularities in order to guaran-
tee that the elimination all T-junctions from a given
input T-layout is possible. Such a result would be
beneficial for applications in meshing for FEM, sur-
face reconstruction into CAD from image data or ge-
ometries generated via topology optimization, and in
constructing spline bases for isogeometric analysis.

ACKNOWLEDGMENTS

B. Osting is partially supported by NSF DMS 16-
19755 and 17-52202. R. Viertel and M. Staten are
supported by Sandia National Laboratories. Sandia
National Laboratories is a multi-mission laboratory
managed and operated by National Technology & En-
gineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Secu-

rity Administration under contract DE-NA0003525.
SAND2019-5668 C.

References

[1] Lindquist D.R., Gilest M.B. “A Comparison of
Numerical Schemes on Triangular and Quadrilat-
eral Meshes.” 11th International Conference on
Numerical Methods in Fluid Dynamics, pp. 369–
373. Springer Berlin Heidelberg, 1989

[2] Sandia National Laboratories. “Trilinos 12.12.1.”,
2017

[3] Kowalski N., Ledoux F., Frey P. “A PDE
Based Approach to Multidomain Partitioning
and Quadrilateral Meshing.” Proceedings of the
21st International Meshing Roundtable, pp. 137–
154. Springer Berlin Heidelberg, 2013

[4] Campen M. “Partitioning Surfaces Into Quadri-
lateral Patches: A Survey.” Comput. Graph. Fo-
rum, vol. 36, no. 8, 567–588, 2017

[5] MegaCads. “MegaCads 2.5.”, 2001

[6] Tam T.K.H., Armstrong C.G. “2D Finite Ele-
ment Mesh Generation by Medial Axis Subdivi-
sion.” Adv. Eng. Software, vol. 13, no. 5, 313–324,
Sep. 1991

[7] Gould J., Martineau D., Fairey R. “Automated
Two-Dimensional Multi-Block Meshing Using the
Medial Object.” Proceedings of the 20th Interna-
tional Meshing Roundtable, pp. 437–452. Springer
Berlin Heidelberg, 2012

[8] Dong S., Bremer P.T., Garland M., Pascucci V.,
Hart J.C. “Spectral Surface Quadrangulation.”

ACM Trans. Graph., vol. 25, no. 3, 1057–1066,
Jul. 2006

[9] Lei N., Zheng X., Si H., Luo Z., Gu X. “Gen-
eralized Regular Quadrilateral Mesh Generation
based on Surface Foliation.” Procedia Engineer-
ing, vol. 203, 336 – 348, 2017. 26th International
Meshing Roundtable, IMR26, 18-21 September
2017, Barcelona, Spain

[10] Campen M., Bommes D., Kobbelt L. “Dual
Loops Meshing: Quality Quad Layouts on Mani-
folds.” ACM Trans. Graph., vol. 31, no. 4, 1–11,
2012

[11] Tarini M., Puppo E., Panozzo D., Pietroni N.,
Cignoni P. “Simple Quad Domains for Field
Aligned Mesh Parametrization.” ACM Trans.
Graph., vol. 30, no. 6, 142:1–142:12, Dec. 2011

[12] Bommes D., Lempfer T., Kobbelt L. “Global
Structure Optimization of Quadrilateral
Meshes.” Comput. Graph. Forum, vol. 30,
no. 2, 375–384, Apr. 2011

[13] Bommes D., Campen M., Ebke H.C., Alliez P.,
Kobbelt L. “Integer-Grid Maps for Reliable Quad
Meshing.” ACM Trans. Graph., vol. 32, no. 4,
98:1–98:12, 2013

[14] Razafindrazaka F.H., Reitebuch U., Polthier K.
“Perfect Matching Quad Layouts for Manifold
Meshes.” Comput. Graph. Forum, vol. 34, no. 5,
219–228, Aug. 2015

[15] Fogg H.J., Armstrong C.G., Robinson T.T. “Au-
tomatic Generation of Multiblock Decomposi-
tions of Surfaces.” Int. J. Numer. Meth. Engng.,
vol. 101, no. 13, 965–991, 2015

[16] Campen M., Bommes D., Kobbelt L. “Quantized
Global Parametrization.” ACM Trans. Graph.,
vol. 34, no. 6, 192:1–192:12, Oct. 2015

[17] Zhang S., Zhang H., Yong J.H. “Automatic
Quad Patch Layout Extraction for Quadrilateral
Meshes.” Comput. Aided Des. Appl., vol. 13,
no. 3, 409–416, 2016

[18] Pietroni N., Puppo E., Marcias G., Roberto R.,
Cignoni P. “Tracing Field-Coherent Quad Lay-
outs.” Comput. Graph. Forum, vol. 35, no. 7,
485–496, Oct. 2016

[19] Viertel R., Osting B. “An Approach to Quad
Meshing Based on Harmonic Cross-Valued Maps
and the Ginzburg–Landau Theory.” SIAM J. Sci.
Comput., vol. 41, no. 1, A452–A479, Jan. 2019

[20] Hertzmann A., Zorin D. “Illustrating Smooth
Surfaces.” Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques, pp. 517–526. ACM Press/Addison-Wesley
Publishing Co., 2000

[21] Ray N., Sokolov D. “Robust Polylines Tracing
for N-Symmetry Direction Field on Triangulated
Surfaces.” ACM Trans. Graph., vol. 33, no. 3,
30:1–30:11, 2014

[22] Myles A., Pietroni N., Zorin D. “Robust Field-
Aligned Global Parametrization.” ACM Trans.
Graph., vol. 33, no. 4, 135:1–135:14, 2014

[23] Jadhav S., Bhatia H., Bremer P.T., Levine J.A.,
Nonato L.G., Pascucci V. “Consistent Approx-
imation of Local Flow Behavior for 2D Vector
Fields Using Edge Maps.” Topological Methods in
Data Analysis and Visualization II, Mathematics
and Visualization, pp. 141–159. Springer Berlin
Heidelberg, 2012

[24] Eppstein D., Goodrich M.T., Kim E., Tamstorf
R. “Motorcycle Graphs: Canonical Quad Mesh
Partitioning.” Proceedings of the Symposium on
Geometry Processing, pp. 1477–1486. Eurograph-
ics Association, 2008

[25] Razafindrazaka F.H., Polthier K. “Optimal Base
Complexes for Quadrilateral Meshes.” Comput.
Aided Geom. D., vol. 52-53, 63–74, Mar. 2017

[26] Palacios J., Zhang E. “Rotational Symmetry
Field Design on Surfaces.” ACM Trans. Graph.,
vol. 26, no. 3, 55:1–55:10, Jul. 2007

[27] Ray N., Vallet B., Li W.C., Lévy B. “N-
Symmetry Direction Field Design.” ACM Trans.
Graph., vol. 27, no. 2, 10:1–10:13, 2008

[28] Ray N., Vallet B., Alonso L., Lévy B. “Geometry-
Aware Direction Field Processing.” ACM Trans.
Graph., vol. 29, no. 1, 1:1–1:11, 2009

[29] Bommes D., Zimmer H., Kobbelt L. “Mixed-
Integer Quadrangulation.” ACM Trans. Graph.,
vol. 28, no. 3, 77:1–77:10, Jul. 2009

[30] Crane K., Desbrun M., Schröder P. “Trivial Con-
nections on Discrete Surfaces.” Comput. Graph.
Forum, vol. 29, no. 5, 1525–1533, 2010

[31] Knöppel F., Crane K., Pinkall U., Schröder
P. “Globally Optimal Direction Fields.” ACM
Trans. Graph., vol. 32, no. 4, 59:1–59:10, 2013

[32] Panozzo D., Puppo E., Tarini M., Sorkine-
Hornung O. “Frame Fields: Anisotropic and Non-
orthogonal Cross Fields.” ACM Trans. Graph.,
vol. 33, no. 4, 1–11, 2014

[33] Jakob W., Tarini M., Panozzo D., Sorkine-
Hornung O. “Instant Field-Aligned Meshes.”
ACM Trans. Graph., vol. 34, no. 6, 189:1–189:15,
2015

[34] Vaxman A., Campen M., Diamanti O., Panozzo
D., Bommes D., Hildebrandt K., Ben-Chen M.
“Directional Field Synthesis, Design, and Pro-
cessing.” Comput. Graph. Forum, vol. 35, no. 2,
545–572, 2016

[35] Huang Z., Ju T. “Extrinsically Smooth Direction
Fields.” Comput. Graph., vol. 58, 109–117, 2016

[36] Beaufort P.A., Lambrechts J., Henrotte F.,
Geuzaine C., Remacle J.F. “Computing two di-
mensional cross fields - A PDE approach based
on the Ginzburg-Landau theory.” Proceedings of
the 26th International Meshing Roundtable, pp.
219–231. Elsevier Ltd., 2017

[37] Bethuel F., Brezis H., Hélein F. Ginzburg-
Landau Vortices, vol. 13 of Progress in Non-
linear Differential Equations and Their Applica-
tions. Birkhäuser Boston, 1994

[38] Ruuth S.J., Merriman B., Xin J., Osher S.
“Diffusion-Generated Motion by Mean Curvature
for Filaments.” J. Nonlinear Sci., vol. 11, no. 6,
473, 2001

[39] Laux T., Yip N.K. “Analysis of Diffusion
Generated Motion for Mean Curvature Flow in
Codimension Two: A Gradient-Flow Approach.”
Arch. Rational Mech. Anal., vol. 232, no. 2, 1113–
1163, May 2019

[40] Zhang E., Mischaikow K., Turk G. “Vector Field
Design on Surfaces.” ACM Trans. Graph., vol. 25,
no. 4, 1294–1326, 2006

[41] Schwartz A.J. “A Generalization of a Poincaré-
Bendixson Theorem to Closed Two-Dimensional
Manifolds.” Amer. J. Math., vol. 85, no. 3, 453–
458, 1963

[42] Borden M.J., Benzley S.E., Shepherd J.F. “Hexa-
hedral Sheet Extraction.” Proceedings of the 11th
International Meshing Roundtable, pp. 147–152.
Springer-Verlag, 2002

[43] Daniels J., Silva C.T., Shepherd J., Cohen
E. “Quadrilateral Mesh Simplification.” ACM
Trans. Graph., vol. 27, no. 5, 148:1–148:9, Dec.
2008

[44] Sandia National Laboratories. “The CUBIT Ge-
ometry and Mesh Generation Toolkit 15.3.”, 2017

